Как определяется частота вращения магнитного поля статора. Вращающееся магнитное поле ротора и рабочее вращающее магнитное поле Ас.М

Одним из главных достоинств трехфазных цепей является возможность получения вращающихся магнитных полей, ле­жащих в основе работы наиболее распространенных типов асинхронных двигателей. Принцип получения вращающегося маг­нитного поля можно проиллюстрировать на примере двух взаимно перпендикулярных катушек индуктивностей. На рисунке 2.20 показан в разрезе один виток каждой катушки, питаемой синусоидальными токами i 1 и i 2 . Под действием этих токов создаются магнитные поля с индукцией в точке пересечения катушек (ток течет от конца, помеченного знаком «х» к концу «): B 1 = B m sinwt и B 2 = B m coswt . Результирующий вектор магнитной индукции

т. е. получено результирующее магнитное поле, вращающееся по часовой стрелке с угловой частотой w . Аналогичным образом может быть образовано вращающееся магнитное поле в трехфазной системе с токами, создающими мгновенные значения индукции:

Рисунок 2.20 – Магнитное поле двух взаимно перпендикулярных

катушек индуктивности

Введем в рассмотрение фазовый оператор a = e j 2 p /3 . Тогда результирующий вектор индукции определится как:


(2.52)

Таким образом, получено результирующее магнитное поле с амплитудой магнитной индукции 1,5В m , вращающееся с угловой частотой w по часовой стрелке.

На использовании вращающегося магнитного поля основан принцип действия трехфазного асинхронного двигателя. Вращающееся магнитное поле в асинхронном двигателе создается обмотками статора. Это поле наводит в обмотках ротора индукционные токи. Взаимодействие этих токов с вращающимся магнитным полем приводит к возникновению вращающегося момента в направлении поворота поля. В результате ротор начинает вращаться со скоростью u (об/мин), несколько меньшей скорости вращения магнитного поля u n (отсюда термин «асинхронный»). Для характеристики степени различия указанных скоростей враще­ния вводят параметр

, (2.53)

называемый скольжением. Для получения вращающего момента величина скольжения должна быть больше нуля (обычно s 0 = 0,02...0,04 ).



Синхронный генератор

Ротор синхронных машин вращается синхронно с вращающимся магнитным полем. Поскольку частоты вращения ротора и магнит­ного поля одинаковы, в обмотке ротора не индуцируются токи. Поэтому обмотка ротора получает питание от источника постоянного тока. Устройство статора синхронной машины практически не отличается от устройства статора асинхронной машины.

Питание к обмотке ротора подводится через скользящие контакты, состоящие из медных колец и графитовых щеток. При враще­нии ротора его магнитное поле пересекает витки обмотки статора, индуцируя в них ЭДС. Чтобы получить синусоидальную форму ЭДС, зазор между поверхностью ротора и статором увеличивают от середины полюсного наконеч­ника к его краям (рисунок 2.21).

Рисунок 2.21 – Синхронный генератор

Частота индуцированной ЭДС (напряжения, тока) синхронного генератора:

где р – число пар полюсов ротора генератора.

Синхронный двигатель

Устройство статора синхронного двигателя анало­гично устройству статора асинхронного двигателя. Ротор синхронного двигателя представляет собой электромагнит или постоянный магнит (рисунок 2.22). Принцип работы синхронного двигателя поясняется рисунком. Внутри магнита N 1 S 1 помещен магнит NS . Если магнит N 1 S 1 вращать, то он потянет за собой магнит NS . В стационарном режиме частоты вращения обоих магнитов одинаковы.

К валу магнита NS можно приложить механическую нагрузку. Чем больше эта нагрузка, тем больше угол отставания оси магнита NS от оси магнита N 1 S 1 .


Рисунок 2.22 – Синхронный двигатель

В реальном двигателе поле магнита заменено вращающимся магнитным полем статора; при этом ротор либо вращается синхронно с магнитным полем статора, отставая на угол a , либо останавливается (выпадает из синхронизма) при перегрузке. Таким образом, независимо от нагрузки ротор всегда враща­ется с постоянной частотой, равной частоте вращения магнитного поля статора: n 2 = n 1 = 60f/р .

Постоянство частоты вращения – важное достоин­ство синхронного двигателя. Строгое постоянство частоты вращения требуется во многих областях техники, например при записи и воспроизведении звука. Недостаток синхронного двигателя – трудность пуска: для пуска нужно раскрутить ротор в сторону вращения поля статора. Для этого чаще всего применяют специальную короткозамкнутую обмотку, вделанную в ротор. В момент пуска двигатель работает как асинхронный. Когда частота вращения ротора приближается к частоте вращения поля статора, ротор входит в синхронизм и двигатель работает как синхронный.

Синхронные двигатели особенно удобны для привода роторов гироскопов. В тех случаях, когда гироскоп используют для особо точных измерений (например, в баллистических ракетах), приводом ротора гироскопа служит синхронный двигатель. При этом частота вращения ротора зависит только от конструкции двигателя и частоты питающего тока, которую можно стабилизировать с очень высокой степенью точности.

Вопросы для самотестирования

1 Как изменяется эквивалентная индуктивность двух последовательно соединённых индуктивно связанных катушек при согласном включении?

2 Из каких двух составляющих состоит эквивалентное сопротивление отдельных индуктивно связанных ветвей при их параллельном включении?

3 Какие законы и методы используют при расчёте индуктивно связанных цепей?

4 Размагничивает или намагничивает вторичная обмотка трансформатора первичную обмотку?

5 Какие виды соединений могут быть в трёхфазных цепях?

Обмотка короткозамкнутого провода состоит из m-частей. Сдвиг фаз между ЭДС индуктивного вращающего магнитным полем статора в двух соседних стержнях, равен

р – число пар полюсов двигателя;

2 – число витков в каждой фазе.

Пусть цепь ротора разомкнута, т.е. ток в ней отсутствует, на ротор не действуют электромагнитные силы и он неподвижен. При неподвижности ротора, частота ЭДС индуктированной в его обмотке, равна частоте токов в цепи обмоток статора.

f – частота сети, 50 Гц;

Если ротор вращать с частотой n 2 , вслед за вращающимся магнитным полем статора, то частота ЭДС индуктированной обмотки уменьшится и станет равной


Если цепь ротора замкнуть, то токи в ней образуют:

1) Многофазную систему, с числом фаз m 2 =N, в случае короткозамкнутого ротора.

2) Трехфазную систему, с числом фаз m 2 =3, в случае фазного ротора => токи в обмотке ротора аналогичны токам в обмотках статора, должны возбуждать вращающееся магнитное поле.

34. Рабочее вращающееся магнитное поле асинхронного двигателя

n отн. – частота вращения этого поля, относительно ротора.


Т.к. сам ротор вращается в том же направлении с частотой n 2 , то его поле вращается в пространстве с частотой, равной

Т.е. поле ротора вращается синхронно с полем статора, это является характерным условием полной передачи энергии от статора к ротору.

Складываясь, вращающееся магнитное поле статора и ротора, образуют рабочее вращающееся магнитное поле асинхронного двигателя, которое служит таким же связующим звеном, между обмотками статора и ротора, как и переменное магнитное поле в сердечнике трансформатора, передающее энергию от первичной обмотки ко вторичной обмотке. Именно это, рабочее поле, необходимо знать для анализа процессов в цепях статора и ротора.

35. Механическая характеристика асинхронного двигателя

Для устойчивой работы двигателя, важно, чтобы автоматически установилось равновесие вращающего и тормозного моментов, с увеличением нагрузки на валу двигателя, увеличится тормозной момент, соответственно должен возрастать и вращающий момент


Р мех – механическая мощность на вал двигателя;

2 – угловая скорость ротора


Это уравновешивание моментов у работающего двигателя, осуществляется следующим образом, при увеличении нагрузки на валу, тормозной момент оказывается больше вращающего момента, в следствии чего, частота вращения ротора уменьшается, скольжение вырастает. Повышение скольжения вызывает увеличение вращающего момента. Равновесие моментов восстанавливается при возрастании скольжения.




R 2 – активное сопротивление;

X рас.2 – индуктивное рассеянное сопротивление.




–коэффициент мощности.

36) Устройство и принцип действия, области применения электрических машин постоянного тока(мпт)

МПТ состоит из неподвижной части, в которой возбуждается главное магнитное поле, и вращающейся части, в которой индуктируется э.д.с. Токи от этой э.д.с., взаимодействуя с главным магнитным полем, создают момент (в двигательном режиме он является вращающим, в генераторном – тормозным).

Неподвижная часть состоит из станины и полюсов, которые к ней крепятся. Полюса подразделяются на главные, в которых возбуждаются основной магнитный поток, и добавочные, которые устанавливаются в целях улучшения коммутации машины.


Принцип действия

Машина постоянного тока может работать в двух режимах: двигательном и генераторном, в зависимости от того, какую энергию к ней подвести - если электрическую, то электрическая машина будет работать в режиме электродвигателя, а если механическую - то будет работать в режиме генератора. Однако электрические машины, как правило, предназначены заводом изготовителем для одного определенного режима работы - или в режиме генератора, или электродвигателя.

Область применения

Электрические Машины постоянного тока используют как в качестве генератора, так и вкачестве двигателя. Наибольшее применение получили двигатели постоянного тока:

Они широко используются для привода подъёмных средств в качестве крановых двигателей.

Приводом транспортных средств в качестве тяговых двигателей.

Для привода устройств автоматики.

Для привода прокатных станов.

Для привода штатных подъёмников.

Условия получения:

1) наличие не менее двух обмоток;

2) токи в обмотках должны отличаться по фазе

3) оси обмоток должны быть смещены в пространстве.

В трёхфазной машине при одной паре полюсов (р=1) оси обмоток должны быть смещены в пространстве на угол 120°, при двух парах полюсов (р=2) оси обмоток должны быть смещены в пространстве на угол 60° и т.д.

Рассмотрим магнитное поле, которое создаётся с помощью трёхфазной обмотки, имеющей одну пару полюсов (р=1). Оси обмоток фаз смещены в пространстве на угол 120° и создаваемые ими магнитные индукции отдельных фаз (BA, BB, BC) смещены в пространстве тоже на угол 120°.

Магнитные индукции полей, создаваемые каждой фазой, как и напряжения, подведённые к этим фазам, являются синусоидальными и отличаются по фазе на угол 120°.

Принцип действия

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на стержни ротора и по закону магнитной индукции наводит в них ЭДС. В стержнях ротора под действием наводимой ЭДС возникает ток. Токи в стержнях ротора создают собственное магнитное поле стержней, которые вступают во взаимодействие с вращающимся магнитным полем статора. В результате на каждый стержень действует сила, которая складываясь по окружности, создает вращающийся электромагнитный момент ротора.

Приняв начальную фазу индукции в фазе А (φA) равной нулю, можно записать:

Магнитная индукция результирующего магнитного поля определяется векторной суммой этих трёх магнитных индукций.

Найдём результирующую магнитную индукцию с помощью векторных диаграмм, построив их для нескольких моментов времени.

Нарисовать векторные диаграммы

Как следует из диаграмм, магнитная индукция B результирующего магнитного поля машины вращается, оставаясь неизменной по величине. Таким образом, трёхфазная обмотка статора создаёт в машине круговое вращающееся магнитное поле. Направление вращения магнитного поля зависит от порядка чередования фаз. Величина результирующей магнитной индукции.

Частота вращения магнитного поля зависит от частоты сетии числа пар полюсов магнитного поля.

, [об/мин].

При этом частота вращения магнитного поля не зависит от режима работы асинхронной машины и её нагрузки.

При анализе работы асинхронной машины часто используют понятие о скорости вращения магнитного поля ω0, которая определяется соотношением:

, [рад/сек].

Для сравнения частоты вращения магнитного поля и ротораввели коэффициент, который назвали скольжением и обозначили буквой. Скольжение может измеряться в относительных единицах и в процентах.

или

Процессы в асинхронной машине Цепь статора

а) ЭДС статора.

Магнитное поле, создаваемое обмоткой статора, вращается относительно неподвижного статора с частотой и будет наводить в обмотке статора ЭДС. Действующее значение ЭДС, наводимой этим полем в одной фазе обмотки статора определяется выражением:

где: =0.92÷0.98 – обмоточный коэффициент;

–частота сети;

–число витков одной фазы обмотки статора;

–результирующее магнитное поле в машине.

б) Уравнение электрического равновесия фазы обмотки статора.

Это уравнение составлено по аналогии с катушкой с сердечником, работающей на переменном токе.

Особенностью многофазных систем является возможность создать в механически неподвижном устройстве вращающееся магнитное поле.
Катушка, подключенная к источнику переменного тока, образует пульсирующее магнитное поле, т.е. магнитное поле, изменяющееся по величине и направлению.

Возьмем цилиндр с внутренним диаметром D. На поверхности цилиндра разместим три катушки, пространственно смещенные относительно друг друга на 120 o . Катушки подключим к источнику трехфазного напряжения (рис. 12.1). На рис. 12.2 показан график изменения мгновенных токов, образующих трехфазную систему.


Каждая из катушек создает пульсирующее магнитное поле. Магнитные поля катушек, взаимодействуя друг с другом, образуют результирующее вращающееся магнитное поле, характеризующееся вектором результирующей магнитной индукции
На рис. 12.3 изображены векторы магнитной индукции каждой фазы и результирующий вектор построенные для трех моментов времени t1, t2, t3. Положительные направления осей катушек обозначены +1, +2, +3.

В момент t = t 1 ток и магнитная индукция в катушке А-Х положительны и максимальны, в катушках В-Y и C-Z - одинаковы и отрицательны. Вектор результирующей магнитной индукции равен геометрической сумме векторов магнитных индукций катушек и совпадает с осью катушки А-Х. В момент t = t 2 токи в катушках А-Х и С-Z одинаковы по величине и противоположны по направлению. Ток в фазе В равен нулю. Результирующий вектор магнитной индукции повернулся по часовой стрелке на 30 o . В момент t = t 3 токи в катушках А-Х и В-Y одинаковы по величине и положительны, ток в фазе C-Z максимален и отрицателен, вектор результирующего магнитного поля размещается в отрицательном направлении оси катушки С-Z. За период переменного тока вектор результирующего магнитного поля повернется на 360 o .


Частота вращения магнитного поля или синхронная частота вращения

(12.1)

где P- число пар полюсов.

Катушки, изображенные на рис. 12.1, создают двухполюсное магнитное поле, с числом полюсов 2Р = 2. Частота вращения поля равна 3000 об/мин.
Чтобы получить четырехполюсное магнитное поле, необходимо внутри цилиндра поместить шесть катушек, по две на каждую фазу. Тогда, согласно формуле (12.1), магнитное поле будет вращаться в два раза медленней, с n 1 = 1500 об/мин.
Чтобы получить вращающееся магнитное поле, необходимо выполнить два условия.

1. Иметь хотя бы две пространственно смещенные катушки.

2. Подключить к катушкам несовпадающие по фазе токи.

12.2. Асинхронные двигатели.
Конструкция, принцип действия

Асинхронный двигатель имеет неподвижную часть, именуемую статором , и вращающуюся часть, называемую ротором . В статоре размещена обмотка, создающая вращающееся магнитное поле.
Различают асинхронные двигатели с короткозамкнутым и фазным ротором.
В пазах ротора с короткозамкнутой обмоткой размещены алюминиевые или медные стержни. По торцам стержни замкнуты алюминиевыми или медными кольцами. Статор и ротор набирают из листов электротехнической стали, чтобы уменьшить потери на вихревые токи.
Фазный ротор имеет трехфазную обмотку (для трехфазного двигателя). Концы фаз соединены в общий узел, а начала выведены к трем контактным кольцам, размещенным на валу. На кольца накладывают неподвижные контактные щетки. К щеткам подключают пусковой реостат. После пуска двигателя сопротивление пускового реостата плавно уменьшают до нуля.
Принцип действия асинхронного двигателя рассмотрим на модели, представленной на рисунке 12.4.

Вращающееся магнитное поле статора представим в виде постоянного магнита, вращающегося с синхронной частотой вращения n 1 .
В проводниках замкнутой обмотки ротора индуктируются токи. Полюса магнита перемещаются по часовой стрелке.
Наблюдателю, разместившемуся на вращающемся магните, кажется, что магнит неподвижен, а проводники роторной обмотки перемещаются против часовой стрелки.
Направления роторных токов, определенные по правилу правой руки, указаны на рис. 12.4.


Рис. 12.4

Пользуясь правилом левой руки, найдем направление электромагнитных сил, действующих на ротор и заставляющих его вращаться. Ротор двигателя будет вращаться с частотой вращения n 2 в направлении вращения поля статора.
Ротор вращается асинхронно т.е частота вращения его n 2 меньше частоты вращения поля статора n 1 .
Относительная разность скоростей поля статора и ротора называется скольжением.

Скольжение не может быть равным нулю, так как при одинаковых скоростях поля и ротора прекратилось бы наведение токов в роторе и, следовательно, отсутствовал бы электромагнитный вращающий момент.
Вращающий электромагнитный момент уравновешивается противодействующим тормозным моментом М эм = М 2 .
С увеличением нагрузки на валу двигателя тормозной момент становится больше вращающего, и скольжение увеличивается. Вследствие этого, возрастают индуктированные в роторной обмотке ЭДС и токи. Вращающий момент увеличивается и становится равным тормозному моменту. Вращающий момент может возрастать с увеличением скольжения до определенного максимального значения, после чего при дальнейшем увеличении тормозного момента вращающий момент резко уменьшается, и двигатель останавливается.
Скольжение заторможенного двигателя равно единице. Говорят, что двигатель работает в режиме короткого замыкания.
Частота вращения ненагруженного асинхронного двигателя n 2 приблизительно равна синхронной частоте n 1 . Скольжение ненагруженного двигателя S &asimp; 0. Говорят, что двигатель работает в режиме холостого хода.
Скольжение асинхронной машины, работающей в режиме двигателя, изменяется от нуля до единицы.
Асинхронная машина может работать в режиме генератора. Для этого ее ротор необходимо вращать сторонним двигателем в направлении вращения магнитного поля статора с частотой n 2 > n 1 . Скольжение асинхронного генератора.
Асинхронная машина может работать в режиме электромашинного тормоза. Для этого необходимо ее ротор вращать в направлении, противоположном направлению вращения магнитного поля статора.
В этом режиме S > 1. Как правило, асинхронные машины используются в режиме двигателя. Асинхронный двигатель является наиболее распространенным в промышленности типом двигателя. Частота вращения поля в асинхронном двигателе жестко связана с частотой сети f 1 и числом пар полюсов статора. При частоте f 1 = 50 Гц существует следующий ряд частот вращения.

Асинхронная машина с заторможенным ротором работает как трансформатор. Основной магнитный поток индуктирует в статорной и в неподвижной роторной обмотках ЭДС Е 1 и Е 2к.

где Ф m - максимальное значение основного магнитного потока, сцепленного со
статорной и роторной обмотками;
W 1 и W 2 - числа витков статорной и роторной обмоток;
f 1 - частота напряжения в сети;
K 01 и K 02 - обмоточные коэффициенты статорной и роторной обмоток.

Чтобы получить более благоприятное распределение магнитной индукции в воздушном зазоре между статором и ротором, статорные и роторные обмотки не сосредоточивают в пределах одного полюса, а распределяют по окружностям статора и ротора. ЭДС распределенной обмотки меньше ЭДС сосредоточенной обмотки

Обмотка короткозамкнутого ротора состоит из N стержней. Между ЭДС, индуктированными вращающимся магнитным полем статора в двух соседних стержнях, сдвиг фаз равен 360°p/N . Можно считать, что число фаз короткозамкнутого ротора равно числу стержней, m 2 =N, а число витков в каждой фазе w 2 =1/2 .

Аналогично цепь фазного ротора представляет собой трехфазную систему m 2 =3 с числом витков w 2 в каждой фазе. Здесь и в дальнейшем все величины, относящиеся к фазе ротора, будут отмечаться индексом 2, а относящиеся к фазе статора - индексом 1.

Примем сначала, что цепь ротора разомкнута, т.е. ток в ней отсутствует, на ротор не действуют электромагнитные силы и он неподвижен. В этом случае магнитное поле машины представляет собой только вращающееся магнитное поле статора.

При неподвижном роторе индуктированной в его обмотке ЭДС равна частоте f токов в цепи статора. Если ротор вращать с частотой n вслед за вращающимся полем статора, то частота индуктированной в его обмотке ЭДС уменьшится. Эту частоту f 2 можно определить из выражения n 1 =f·60/p , в котором вместо частоты вращения поля статора n 1 нужно подставить разность n 1 - n , т.к. вращающееся магнитное поле статора пересекает витки обмотки ротора только вследствие того, что частота его вращения n меньше, чем поля статора n 1 : f 2 =p(n 1 -n)/60.

Если теперь цепь ротора замкнуть, то токи в ней образуют многофазную систему с m 2 =N фазами в случае короткозамкнутого ротора и с m 2 =3 , т.е. трехфазную в случае фазного ротора. Следовательно, токи в обмотке ротора аналогично токам в обмотке статора должны возбуждать вращающееся магнитное поле. Частоту вращения n отн этого поля относительно ротора можно определить, пользуясь общим выражением частоты вращения многополюсного поля n 1 =f·60/p : n отн = f 2 ·60/p .

Т.к. сам ротор вращается в том же направлении с частотой n , то его поле вращается в пространстве с частотой n отн + n = (n 1 – n) + n = n 1 , т.е. поле ротора вращается синхронно с полем статора.

Т.о., вращающиеся поля статора и ротора по отношению друг к другу остаются неподвижными, что является характерным условием полной передачи энергии от статора к ротору. Складываясь, вращающиеся магнитные поля статора и ротора образуют рабочее вращающееся магнитное поле асинхронного двигателя. Рабочее вращающее поле в ас.дв. Служит таким же связующим звеном между обмотками статора и ротора, как и переменное магнитное поле в магнитопроводе трансформатора, передающее энергию от первичной к вторичной обмотке.

В дальнейшем вместо термина рабочее вращающееся магнитное поле будем пользоваться сокращенным - вращающееся магнитное поле ас.дв.

Различают несколько режимов работы ас.дв.: нормальный режим, соответствующий номинальному скольжению ротора s=s ном при номинальном напряжении U 1 =U 1 ном и токе I 1 =I 1 ном питающей сети; рабочий режим, при котором напряжение питающей сети близко к номинальному значению или равно ему, U 1 ≈U 1 ном, а нагрузка двигателя определяется тормозным моментом на валу при скольжении s≤s ном и токе I 1 =I 1 ном; режим пуска двигателя в ход, возникащий при подключении напряжения питающей сети и неподвижном роторе s=1 .

Режим работы всех фаз статора одинаковый. То же относится к фазам ротора. Поэтому анализ работы ас.дв. можно вести для одной фазы, представив одну ее обмотку одним витком.